CCDPUL STATUS 27sep05 JSF

- Begin with a list of setup cuts; want to check performance of ttccd_cut (imported from Bipul's '97 analysis)
 - pscut02 (beam cuts);
 - kcuts (kinematics);
 - -PV_noTG(inverted PV cut, no explicit TG PV)

LIST of SETUP CUTS

kinematics, utc quality, pion ID

COS3D

ZFRF

ZUTOUT

RSDEDX

UTCQUAL

RNGMOM

Reversed PV cut (target not included in PV)

-PV_noTG

B4DEDX

BWTRS

B4TRS

B4ETCON

B4CCD

CPITRS CPITAIL

CKTRS

CKTAIL

TGQUALT

TGZFOOL

EPITG

PSCUT_02

EPIMAXK

TARGF

DTGTTP

RTDIF

DRP

PHIVTX

B4EKZ

TGER

OPSVETO

TGEDGE

TIMCON

TGTCON

TIC

RV

UPV

Some target cuts

EIC

DELC

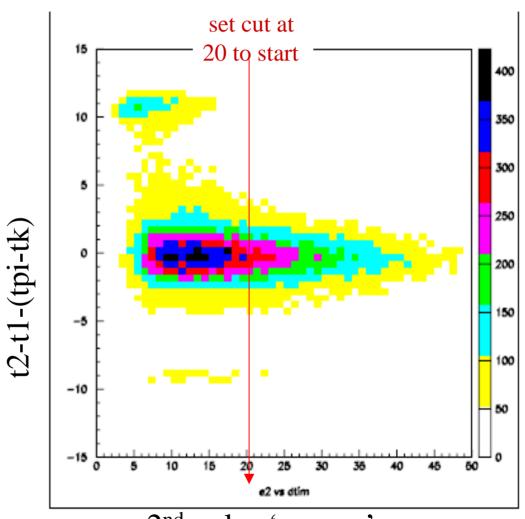
KIC

TGGEO

TGQUALT0

PIGAP

TGB4


DELC6

27-sep-05

Learned so far

2nd pulse 'energy' is not in MeV, so applying '97 cut at '1.5' is near threshold

(almost certainly difference caused by scale factor in 2002 calibrations)

2nd pulse 'energy'

acceptance at kp2 peak 0.73; at km2 peak 0.73

acceptance in pnn2 box varies with ptot: ~0.4 at 180 MeV/c

 $=> A*R \sim 1.8 @ 180 MeV/c$

27-sep-05

- There are some logical problems that it might be nice to understand:
 - In 2002 data (and earlier data, as well), some of the 2nd pulses found by fitter are already included in npi_tg, npiop_tg, npvtg arrays
 - This means that there will be some events cut by some setup cuts
 - ~OK, if we're only concerned with additional rejection of ttccd_cut; but not OK if we want to understand 'efficiency' of the fitter

27-sep-05

• For example: toss out ccdpul cuts, and use:

```
do j=1,npi_tg
do i=1,nk_tg
if(elpi_tg(j).eq.elk_tg(i))then
if(epi_tg(j).gt.1.5)return
endif
enddo
enddo
```

- Acceptance ~kp2 peak ~0.93 (no loss till delco ~15ns)
- Acceptance ptot~160 MeV/c ~0.90
 - and see no dependence on ptot